- Report No. NAWCADWAR-95002-4.5

AN IMPROVED RNS DIVISION ALGORITHM

Peter R. Turner, Ph.D. E} T E @
Mathematics Department A4
U.S. NAVAL ACADEMY Q ELECTE] 4;'
Annapolis, MD 21402 L g SEP 2719959

7 NOVEMBER 1994

e 10050926 149

Approved for Public Release; Distribution is Unlimited.

Prepared for

Avionics Department

Engineering Division (Code 4.5.5.1)
NAVAL AIR WARFARE CENTER
AIRCRAFT DIVISION WARMINSTER
P.O. Box 5152

Warminster, PA 18974-0591

NOTICES

REPORT NUMBERING SYSTEM - The numbering of technical project reports issued by the
Naval Air Warfare Center, Aircraft Division, Warminster is arranged for specific identification
purposes. Each number consists of the Center acronym, the calendar year in which the number was
assigned, the sequence number of the report within the specific calendar year, and the official 2-
digit correspondence code of the Functional Department responsible for the report. For example:
Report No. NAWCADWAR-95010-4.6 indicates the tenth Center report for the year 1995 and
prepared by the Crew Systems Engineering Department. The numerical codes are as follows.

Code Department

4.1 Systems Engineering Department

4.2 Cost Analysis Department

4.3 Air Vehicle Department

4.4 Propulsion and Power Department
4.5 Avionics Department

4.6 Crew Systems Engineering Department

4.10 Conc. Analy., Eval. and Plan (CAEP) Department

PRODUCT ENDORSEMENT - The discussion or instructions concerning commercial products
herein do not constitute an endorsement by the Government nor do they convey or imply the license
or right to use such products.

Reviewed By: é QA/\MM Date: 6 FEB 1995~

Author/COTR

Reviewed By: %/ % @,@ Q Date: L// o/ / Z7

LEVEL lll Manage

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the coliection of Information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, %A 22202-4302, and to the Office of management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
7 NOV 1994 FINAL

4. TITLE AND SUBTITLE) 5. FUNDING NUMBERS

AN IMPROVED RNS DIVISION ALGORITHM

6. AUTHOR(S)

PETER R. TURNER, PH.D.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. REPORT NUMBER

Mathematics Department
U.S. NAVAL ACADEMY

Annapolis, MD 21402 NAWCADWAR-95002-4.5

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Avionics Department; Engineering Division Code 4.5.5.1)

NAVAL AIR WARFARE CENTER; AIRCRAFT DIVISION WARMINSTER
P.O. Box 5152

Warminster, PA 18974-0591

11. SUPPLEMENTARY NOTES

NAWCADWAR P.0.C. — BARRY J. KIRSCH (CODE 4.5.5.1)

12a.DISTRIBUTION / AVAILABILITY STATEMENT 12b.DISTRIBUTION CODE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION {S UNLIMITED.

13. ABSTRACT (Maximum 200 words)

This paper presents a division algorithm for the Residue Number System which is a
modification, and improvement on, the recent algorithm of Hitz and Kaltofen (1994).
The relative cost of the divisions is substantially reduced rendering the RNS division
feasible for computations which are not division-intensive such as the solution of a
system of linear equations of small dimension. The advantages of this algorithm over
the original work of Hitz and Kaltofen lies simply in using a ceiling function in place of
the floor function. This leads to a better and simpler convergence criterion and test,
and, more importantly, to a simple scheme for accelerating the potentially slow early
iteration of the Newton-iteration-based algorithm.

14. SUBJECT TERMS 15. NUMBER OF PAGES
RESIDUE NUMBER SYSTEM (RNS) o PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT :
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) -

Prescribed by ANSI Std. Z39-18
298-102

NAWCADWAR-95002-4.5

AN IMPROVED RNS DIVISION ALGORITHM

PETER R TURNER
MATHEMATICS DEPARTMENT, US NAVAL ACADEMY, ANNAPOLIS, MD 21402

Abstract. This paper presents a division algorithm for the Residue Number System which is a
modification, and improvement on, the recent algorithm of Hitz and Kaltofen (1994). The relative cost
of the divisions is substantially reduced rendering the RNS division feasible for computations which
are not division-intensive such as the solution of a system of linear equations of small dimension. The
advantages of this algorithm over the original work of Hitz and Kaltofen lies simply in using a ceiling
function in place of the floor function. This leads to a better and simpler convergence criterion and
test, and, more importantly, to a simple scheme for accelerating the potentially slow early iterations
of the Newton-iteration-based algorithm.

1. Introduction. One of the main reasons that the Residue Number System,
RNS, has not become the basis of a widely-used general purpose integer or floating-
point arithmetic has been the difficulty in performing division and other nonstandard
RNS operations. Over recent years much effort has been expended in the attempt to
produce a good RNS division algorithm. These fall into several different basic classes.
Most of the earlier algorithms used some form of binary conversion, see [10], [2] and [3]
for example. The L-CRT [5] was an attempt to circumvent the need for full divisions
by using a modified version of the Chinese Remainder Theorem to make efficient
scaling a feasible alternative. The division algorithm of [9] is based on a binary search
using RNS comparisons. Gamberger [4] was one of the first to use an extended RNS
basis to find common factors and scale the operands. The idea of an extended RNS
basis was also exploited in the algorithm of Hitz and Kaltofen [6]. Their approach was
to simulate a double-length accumulator to perform accurate integer division using a
modified Newton iteration to obtain a "reciprocal” of the divisor relative to the range
of the base RNS being used. It is this algorithm which provides the basis for the
present work.

One of the chief potential drawbacks of their algorithm is that the desire to have a
uniform starting point for the reciprocation phase necessarily implies very slow initial
convergence to the reciprocal. For an RNS system with a small dynamic range M
this O(log M) first stage is unlikely to be excessively expensive. However for problems
where this dynamic range is large this first phase can be sufficiently expensive as to
render the system inappropriate for computations where the number of divisions is
large.

One area in which RNS arithmetic has proved highly beneficial is in various aspects
of signal processing. In [7], [8], [11] and [12] the use of RNS arithmetic for adaptive
beamforming problems using Gaussian elimination was investigated. A divisionless
form of the algorithm was found to be feasible for small scale problems [7], [8]. However
the dynamic range requirements grow too fast to allow this approach to be practical
for larger problems. To understand the importance of speeding up RNS divisions
we further observe that the number of divisions needed for the conventional Gauss
climination algorithm is O(N?) (see [1] or any standard Numerical Analysis text).
For integer arithmetic without any temporary use of fractional representations the
number of divisions rises to O(N?3). Even with divisions included in the algorithm,
the wordlengths and time-penalty associated with the divisions limit its usefulness
[11], [12]. An efficient RNS division algorithm therefore has great potential in this

1

(SO ——

Avaitability Codes

Dist

ad

Avail and|or
Special

NAWCADWAR-95002-4.5

and other applications.

The algorithm presented here has two major advantages over the original work of
[6]. First by using the ceiling function in place of the floor function in the reciprocation
phase of the algorithm, a final comparison (requiring a mixed-radix conversion to
the extended RNS basis) is avoided. Second, using this modified algorithm has the
additional benefit of making it easy to recognize when an iterate is distant from the
required reciprocal and therefore to accelerate the convergence. In (6] the need for this
acceleration is recognized and is handled by a sequence of comparisons against powers
of 2 to find a better starting point for the Newton iteration. This is implemented
parallel comparisons and summing the results. Again this will be adequate if the
dynamic range is small enough that the necessary hardware is available. That is log M
comparisons must be performed simultaneously - each requiring a full base extension
via a mixed radix conversion. For all but the smallest of dynamic ranges this is
likely to be unrealistic. This is the motivation for accelerating the basic algorithm.
The speed-up achieved is by an asymptotic factor of 2 in the slowest part of the
. algorithm. Numerical results are presented to verify the reduced iteration count of
the new algorithm over a moderate range. The expected savings would grow with the
dynamic range. The new algorithm does not improve the order of the time-complexity
but has the combined merits of simplifying the original algorithm and speeding it up
most when it is slowest.

In the next section we begin with a brief summary of the notation used here and of
the Hitz and Kaltofen algorithm without addressing the specifics of its implementation
in RNS arithmetic which is ably detailed in the original paper [6]. In section 3, the
convergence analysis of Newton’s method for reciprocation is revisited with reference to
the particular context of integer arithmetic. The benefits of using the ceiling function
in terms of this convergence analysis and for implementation in terms of avoiding
magnitude comparison testing are described. Section 4 is devoted to accelerating
the early iterations by recognizing the situation where the iterates are well-removed
from the desired reciprocal. Numerical experiments to show the savings made by this
‘algorithm are summarized in Section 5. The details of the RNS implementation of the
revised algorithm are essentially unchanged and are only addressed explicitly when
necessary for clarification of the presentation.

The paper concludes with a summary of the findings together with some discus-
sion of area-complexity and the potential benefits of having several RNS processors
operating in parallel.

2. The division algorithm of Hitz and Kaltofen. In this section we study
the division algorithm of Hitz and Kaltofen [6] which can be used to obtain both
the integer division and the remainder resulting from division of two integers each
represented in an extended RNS which plays the role similar to that of a double length
accumulator in regular binary arithmetic. No CRT conversions or their equivalent are
required by this algorithm. It does however use several RNS base-extension operations.
These however can be performed entirely within the RNS processors - provided enough
such processors are available. The section begins with a brief summary of our notation
-and of the Hitz and Kaltofen algorithm which has at its heart a pseudo-reciprocation
step.

The basic idea here is that a double length RNS representation is used in the
following manner. Let pq, p2, ..., PL, PL+1, ---» P2L be a set of prime numbers. (They

2

NAWCADWAR-95002-4.5

anly need to be relatively prime for this purpose but we shall need Gaussian primes
for our algorithm in order to perform complex RNS arithmetic efficiently.) Assume
they are ordered so that p; < pr4i for each ¢ = 1,2,...,L. In [6] slightly stronger
order assumptions are made but the additional assumptions play no role; indeed even
this assumption can be weakened as we will see in discussing the use of this algorithm
later.

Let

L . L
M=HP:', M=HpL+i
i=1

=1

so that M represents the dynamic range of the base RNSand M M represents the range
of the eztended RNS. Some important (though immediately apparent) observations are
made in [6]:

M, M are relatively prime and M < M.

It follows that M~ mod M exists. Also the first N moduli in the extended repre-
sentation of an extended RNS number represent the remainder of that number mod M

It also follows that multiplication of two numbers represented in the base RNS
(that is, two numbers smaller than M) cannot overflow the extended RNS range.
The division algorithm then consists of two stages in order to obtain the integer
quotient | X/Y | and remainder X modY where X,Y are positive integers in the base
RNS range. In the first, the "reciprocal” |M/Y| of Y is obtained using a modifica-
tion of Newton’s method. This is then used to generated the desired quotient and
remainder.
The reciprocation algorithm is described in [6] as follows.
Algorithm RECIP
Input: Y
Output: |[M/Y]
begin
Z] «— 0
Z2 — 2
while Z; # Z, do
ARSI
Zy — |Z1x(2M =Y % Zy) [M]
MM-Yx*xZ; <Y
then return Z; else return Z; +1
end.

The need for, and correctness of, the correction step is established in [6]. The
iteration in the loop is just Newton’s method in an ”integerized” form. The division
by M, equality testing and comparison are all achievable using the extended RNS basis
in ways which are also detailed in [6]. We shall discuss later only those details which
are needed. Once this M-reciprocation has been completed the rest of the division is
straightforward. This algorithm is also given in [6]:

Algorithm DIVREM

Input: X,Y
Output: |X/Y| and X modY
begin

NAWCADWAR-95002-4.5

Q — | X *RECIP (Y) /M|
R—X-0QxY
Af R <Y then return ¢, R
elsereturn ¢ +1, R-Y
end.

The comparison and division by M are performed as in the RECIP algorithm and
again the reader is referred to [6] for the details of their RNS implementations. One
aspect of the implementation is worth commenting on however.

The comparison and division by M both require base extensions between the base
RNS and the extended RNS and between the eztension RNS based on pr41, ..., p2r
and the full extended RNS system. These operations require mixed conversion to the
corresponding mixed radix systems, MRS. This step is expensive either in time or,
as discussed in [6], in hardware in order to reduce the time-penalty. The hardware
configuration suggested is an array of L(L + 1)/2 modular multipliers with L separate
binary trees of modular adders and a final MRS carry-lookahead adder. With rela-
tively small RNS bases this degree of parallelism in the processors may be realizable.
However the acceleration phase in [6] also requires log M of these comparison units -
each needing the base extension architecture just described.

For the adaptive beamforming solution referred to above, L is typically around
16 and log M around 120 even for moderate-size problems. The overall requirement
would therefore be for some 15,000 modular multipliers. This level of parallelism
can probably be better used for purposes other than just speeding up division. In
the case of Gaussian elimination, there are often several divisions using the same
divisor and so a conventional MRS conversion could perhaps be efficiently pipelined
for this purpose. Avoiding the magnitude comparisons that are central to the Hitz
and Kaltofen algorithm would also be a significant benefit. In the remaining sections
of this paper we establish an alternative form of the algorithm which avoids these
comparisons and achieves a lesser speed-up than the log M comparisons but much
more cheaply. Indeed it uses no additional hardware to that of the base algorithm.

3. Improved reciprocation using the ceiling. It is apparent that the critical
part of this division algorithm is RECIP and that any savings which can be achieved
there are worthwhile. In this subsection we consider two sources of improvement. The
first is the elimination of the correction step by using the ceiling rather than the floor
function in the iteration. The convergence analysis must be appropriately modified -
or simplified - to take account of this. This removes the need for the final comparison
which is implemented in extended RNS by using two base extension operations.

In [6], the number of steps of the Newton iteration is also discussed. For conve-
nience of the analysis this is separated into two parts which can be thought of as a first
stage of order O (log M) which achieves an iterate with a relative error of less than
75% and a second O (loglog M) which is the usual quadratic convergence behavior of
Newton’s method. They go on to discuss a hardware-intensive acceleration of the first
stage as described above. In our setting this acceleration is unlikely to be practica-
ble and so the first stage constitutes a potentially prohibitive number of iterations to
achieve a suitably good estimate that the quadratic convergence takes over.

We begin with a brief review of the convergence theory of Newton’s method for
the modular reciprocation operation. The most important aspects are that the (real)
Newton iteration generates a strictly increasing sequence of iterates - after a possible

4

NAWCADWAR-95002-4.5

decrease on the first iteration if the initial estimate is too large. In our setting this
will imply a strictly increasing integer sequence until it converges. For full details of
the analysis of Newton’s method see a standard Numerical Analysis text such as [1].

The standard (real arithmetic) Newton iteration for finding M/Y where M > Y
is just the application of Newton’s method to the solution of the equation

1 Y
= —=0
fe) =z u
With an appropriately chosen starting point this yields the familiar iteration
Yz
(1) Tntl = Tn (2 = Mn)

If z, < M/Y then it is easy to see that z,41 > Z5. Also from the conventional error
analysis of this iteration, we have

__Ai__.{(,,; _£)2
Ty T T\ Y

so that .41 < M/Y. Tt follows that, at least for n > 1, the sequence () is strictly
increasing. It will converge, eventually quadratically, provided only that z; > 0
which will be ensured if zo < 2M/Y. Usually somewhat more restrictive bounds
resulting from a first order Taylor expansion are put on the iterates, namely that
zg € (%, %Aé) These bounds also have the advantage of preventing cycles in the
"integerized” iteration we shall be considering.

The Hitz and Kaltofen algorithm [6] generates an integer sequence by simply
taking the floor of each iterate. This will also generate an increasing sequence which
”converges” to either |[M/Y] or [M/Y] — 1. In this context ”converges” means that
successive iterates are equal. The simple modification suggested here is that we replace
this floor with the corresponding ceiling so that the iterates are given by

(2) Zng1 = [Zn (2 - Yj")] =27, - {YE’EJ

which can be implemented easily irrespective of which of floor and ceiling is regarded
as a primitive function.

Clearly at each stage this iterate will be greater than its counterpart in the original
(or indeed in the continuous) algorithm and is again a strictly increasing sequence until
"convergence ” is achieved. The acceleration due to the use of the ceiling here is likely
to be slight and should not be thought of as a particularly significant aspect of this
modified algorithm.

As with any discrete or integerized algorithm, ”convergence” has a special inter-
pretation in this context. The strictly increasing nature of the sequence guarantees
that eventually an iterate is obtained such that

<[y

at which point either Znt1 = [¥] or Znt1 = [§] — 1 = []. That these are the only
possibilities follows from the facts that the error is being reduced at each iteration and

Tn4+1 < AI/Y.

NAWCADWAR-95002-4.5
M

Thus eventually the iterates either remain static at [3] or oscillate between [¥]
and [AT,J—J Also two successive iterates cannot be equal unless convergence to [%] has
been achieved. Similarly, the oscillation occurs if, and only if, Z,,4; = Z, — 1. Thus
we have a very simple pair of convergence criteria to test. The iteration is halted if

either Zn+1 = Zn or Zn+1 = Z,—,, - 1.

Thus we have established

THEOREM 1. The Modified RECIP algorithm below returns the correct value of
Ad

Algorithm Modified RECIP
Input: Y
Output: [M]Y]
begin
Zl «~ 0
oy 2
while Zl :;é ZQ and Zl -1 # Zg do
Zy — Zy
Zy— [Zyx(2M =Y x Z1) [IM]
return Z;
end.

The convergence test and magnitude comparison required by the original RECIP
algorithm are thus replaced by a pair of equality tests. (We observe that, of course,
the addition or subtraction of 1 in any RNS system is just the corresponding addition
or subtraction of 1 in each residue.) An analysis of the frequency with which the
oscillation can occur shows that if we regard Y as uniformly distributed in the interval
(0, M] then approximately 75% of the time the iteration will converge to [#] without
any oscillation.

Note that the modified algorithm above is not the final revised algorithm that is
the main objective of this paper. However it does represent the basis of the use of
the ceiling function in the integerized Newton iteration which is at the heart of the
improvements.

We conclude this section with the observation that the algorithm DIVREM in
Section 2 also finishes with a magnitude comparison on which is based a possible
correction step. In both the original algorithm and the version being developed here,
this is avoidable if only the integer part of the result is required and an absolute
less than 1 is acceptable. In the original algorithm this is achieved by simply using
[.] in place of [.] in DIVREM and eliminating the test. The corresponding stage
of the revised algorithm would use RECIP(Y) = [%] and then to set @ « |X *
RECIP (Y) /M]. That this yields an absolute error less than 1 follows since

X _ X+*[M/Y] N X

NS
Y Y M M Y

so that
X X * [M/Y]J lXJ
249 el et S O B [l
T+ [Pz |y
and, except when X/Y is an exact integer, l% + IJ = l%J +1= Hﬁ-] (If the true

result is an integer, then this quotient will be obtained exactly.) If a true, positive,
6

NAWCADWAR-95002-4.5

rerainder is wlso required such as in [6], then some correction step similar to that in
DIVREM is necessary.

4. Accelerating the early iterations. A second consequence of the use of the
ceiling function in the iteration is that it becomes easy to recognize when the iterates
are well-removed from the desired reciprocal - and to make appropriate adjustments
for this. The effect is that the number of iterations used in this first phase is reduced
by an asymptotic factor of 2.

The acceleration is based on the fact that if z, < M/Y in (1) then z,4; =~ 22,
so that the Newton iterates approximately double with each early iteration from a
starting value which is too small. It also follows from (1) that zn,41 < 2z, and
therefore if the floor function is used as in the original [6] algorithm, we can never
have Z,11 = 2Z,. Using the ceiling function allows the possibility that Z,41 = 2Z,.
This condition is also an easy one to check since multiplication by 2 is a simple modular
operation. Let us consider when this ”iterate-doubling” can occur.

From (2) we'see that Zn41 = 22, if

Y 22
Eak

M
Z: <« —
n< Y

which is to say that

or Z, < /MJY. This suggests that we simply test whether Z,4; = 2Z, and if this
returns " True” then replace Z,41 wWith Z,,41 = Z2 - or perhaps some other well-chosen
alternative value. We also observe that the quantity Z2 has already been computed
and so no additional computation is required beyond the equality test.

This will clearly accelerate the early iterations especially in the situation where
M/Y > 1. If, however, M/Y is very large then several iterations may still be required
before iterates larger than /M]Y are reached. There may be significant gains to be
made by including a further scaling into the revised Z,4; when doubling has taken
place. The rest of this section is devoted to a brief analysis of this.

Temporarily write ¢ = M/Y. Our underlying Newton iteration is then

Ty
Tng1 = Tn (2 - ':’)

which is the normal iteration for computing the reciprocal of 1/c.

The modified algorithm RECIP of Section 3 generates iterates 2, 4,8, ... , Z, =27
until Z, > /¢ whereas the further modification outlined above would generate the
iterates 2, 4, 16, ..., Z, = 22"—1, again until Z, > /c. The first of these sequences
requires H log c] iterations to satisfy this condition after which iterate doubling will
not happen and eventually the quadratic convergence will take over. The second
sequence takes [log (logc)] iterations to reach this point. Thus the slowest part of
the algorithm is accelerated from O (log ¢) to O (log(log ¢)) iterations at the cost of an
additional modular operation and an equality test per iteration. This however does not
bring the overall operational complexity of the algorithm down to O (log(log c))since
the number of iterations required to attain a value within a fixed relative error will

7

NAWCADWAR-95002-4.5

still be O (logc)just as in [6]. What is achieved is an improvement by a factor of about

2 in this part of the algorithm.
The fixed relative precision used in [6] was 3/4. That is, they establish that

O (log c)iterations are required to generate an iterate Z,, > ¢/4 after which O (log(log c))further

iterations are required to achieve convergence. Clearly it is desirable to accomplish
the first stage with as few iterations as possible.

In the case of iterate-doubling, it is clearly possible to set Z,+; = aZ2? where « is
a constant to be chosen. The idea is to get beyond the threshold of 1/c more rapidly
without generating an iterate Z,;; which is so large as to set up oscillations by in
turn generating very small iterates. How should we choose a?

The elementary function iteration analysis ([1], Section 3.2, for example) of New-
ton’s method for reciprocals implies that quadratic convergence in the present situation
is guaranteed for any Zy € (¢/2,3c¢/2). This in turn suggests that choosing a = 3/2
is feasible. This choice will certainly accelerate the initial growth of the iterates when
Zp < c. It turns out to be the optimal constant choice for our integer arithmetic

. setting.

First, if Z, < 3¢/2 then it follows that Z,;1 > 3¢/4 and the subsequent relative
errors indeed decrease quadratically. To see this consider again the continuous form
of the algorithm and write

T, =cC-a,

Then the recurrence for the sequence (ay) is given by

Tnt1 Iy Tn
Qpy1 = =—[[2—-—)=a,(2—-a
n+ ¢ c (C) n(n)

and if a, =1 —27F then
Upg1 = (1 - 2"‘) (2 - [1 _ Q_k]) —1_ 092

Next, a larger value of a could be chosen to accelerate this early growth even
further provided only that Z,4; > ¢/2 whenever Z,,_y < y/c and Z,, > ¢. Therefore
a must be such that z, = ac, or a, = @, yields ap4; > 1/2. This implies that

a? —2a+1/2 < 0 which yields o € [1 -V1/2,1+ \/1/2]. Since we are interested in

a > 1, this suggests that the largest acceptable value is @ = 1+ /1/2 ~ 1.7071. A
more intricate analysis shows that the requirement that a,4; > 1/2 is more restrictive
than necessary and that even larger values of a < 2 would also be feasible.

For example a = 15/8 would lead to faster growth of small iterates. Furthermore,
if z, = 15¢/8, so that a, = 15/8, then an41 = 15/64 ~ 0.23, an4o = 1695/4096 ~
0.41 and the convergence behaves essentially quadratically thereafter. In order that
cycles cannot be set up by this process it is necessary that 16-%9 > /¢ which in turn
implies that ¢ > (64/15)* ~ 18.2. Thus the factor a = 15/8 should not be used with
Tho1 <4< \/E

There is another good reason for avoiding a factor such as this too soon in RNS,

‘or any integer, arithmetic. The result of the multiplication should be an integer and

should be computable using modular operations. With our choice of Z; = 2, the
factor @ = 3/2 would always result in even integers during this first growth phase and
could therefore be repeated. It could also be a precomputed multiplier for modular

8

NAWCADWAR-95002-4.5

pperations where we know there is no risk of overflowing the dynamic range - which
is the present situation. @ = 3/2 is the largest such constant.

The sequence of initial iterates used until Z, > \/c¢ becomes 2, 6, 54, 4374,
which with Zy=2is given by Z, =2 32”1, The maximum number of 1terat10ns is
reduced to [log ([1 + log] /2log3)] which is, approximately, equivalent to replacing
Vewith ¢(1/3) in the original inequality. With this growth factor for the early iterations
our revised algorithm becomes:

Algorithm CRECIP (The accelerated Ceiling version of RECIP)

Input: Y

Output: [M/]Y]

begin
VAR
Z2 — 2
while Z, # Z, and Z; — 1 # Z; do
Zy «— Zy
22 — I-Zl * (2M —-Y x Z])/M.l
—on - |]
if Z2 = 2Z1 then Z2 = %Z?
return Z;
end.

We note that in the second form of the Newton iteration both 2Z; and Z? have
been computed before the test and acceleration step are performed.

5. Numerical experiments. The analysis above suggests that either of the ac-
celeration approaches described in the previous section is likely to represent a signifi-
cant saving relative to the original modified algorithm of Section 3. Results of tests are
included in this section which illustrate clearly that substantial savings in the number
of iterations required are indeed achieved by the algorithm CRECIP. The experiments
were performed using conventional integer arithmetic with a 32-bit two’s complement
representation. The number of iterations required for convergence was recorded for
each of the algorithms: the modified algorithm of Section 3, the accelerated version
using o = 1 as described and finally CRECIP with & = 3/2.

With either of the accelerated algorithms, the progress will still be slow if the first
iterate greater than +/c is only slightly greater than this threshold. Whether this is
more likely to happen with @ = 1 or with & = 3/2 will vary with c. For any particular
value, the fastest convergence will be achieved if an iterate is only slightly smaller
than /¢ so that the next one is close to 24/c. For this reason there are cases in the
results where a = 1 appears to be better than a = 3/2. However the general result is
clearly that the latter choice is to be preferred. As the dynamic range of the integers
increases the advantage to be gained from this latter choice would grow.

Specifically, the numbers of iterations were obtained for ¢ = 2,3, ..., 10 and for ran-
domly generated values in each of the intervals [n 2105, (n + 1) - 10"] forn =2,3,...,10
and k = 1,2, ...,8. Partial results for one particular case form Table 1 and a summary
of the performance over several runs of this experiment is presented as Table 2.

The pattern observed even in these partial results is typical of all the results
generated. There are cases where the a = 1 form of the algorithm performs somewhat

NAWCADWAR-95002-4.5

better than CRECIP (o = 3/2) but the proportional improvement when the latteris
best is much greater.

By using random samples such as those described above rather than the full range
of integers in the dynamic range, we avoid biasing the results artificially in favor of the
CRECIP algorithm due to a preponderance of large values of ¢. Also by using ”powers
of 10” as the basis for the random sample any effect of a pattern in the distribution of
the square roots relative to the accelerated iterates powers of 2 or powers of 3 is likely
to be minimized.

TABLE 1 Numbers of iterations required for various forms of the integer
reciprocation algorithm

¢ Original | a=1 | a=3/2
10 5) 5
54 9 8 4
94 10 9 7
105 10 9 7
286 12 7 9
4949 17 13 7
8830 18 14 9
53996 21 17 13
90028 21 10 13
723813 25 14 17
29040699 30 19 8
34088349 31 20 10
914885094 | 36 25 16
1051248160 | 36 25 16

In Table 2, we present the total numbers of iterates for each of the algorithms
for complete runs of the randomized test described above. There were five runs in
which all three algorithms were tested and a further three using just the two forms of
the accelerated algorithm. All eight of these are taken into account in generating the
approximate averages which form the final line of the table.

TABLE 2 Total numbers of iterations for several runs of the randomized test

Original | a=1 | CRECIP
1648 1097 941
1645 1087 941
1648 1100 942
1649 1090 944
1647 1099 935
Mean 1647 | 1095 941

In this section we have seen that the use of the ceiling form of the algorithm permits
significant savings due to the possibility of generating exact iterate-doubling when
current iterates are well-removed from the desired reciprocal. This iterate-doubling
also has a simple interpretation in the inference that such iterates are smaller than /c.
Further analysis of the errors shows that using @ > 1 is advantageous and because of
the requirement for exact integer arithmetic the choice o = 3/2 is optimal.

6. Conclusions. In this paper we have presented a modified version of the RNS-
integer division algorithm introduced by Hitz and Kaltofen in [6]. This modified
version has several advantages over the original unless a very large amount of hardware

10

NAWCADWAR-95002-4.5

is available to implement the parallel acceleration technique described in [6].

The basis for the improvements is the use of the ceiling function in place of the
floor in the original algorithm. The advantages gained are, firstly, that the additional
magnitude comparison required by [6] is avoided since the underlying reciprocation will
always yield the ceiling of the desired quotient. (Of course, subtraction of unity would
deliver the floor if this is required for a specific purpose.) The magnitude comparisons
saved involve full MRS conversions and base extensions between the base-RNS and
the extension-RNS systems. These are potentially expensive operations.

The second major gain is that the modified algorithm CRECIP lends itself to
substantial acceleration of its underlying Newton iteration due to the iterate-doubling
inherent in the ceiling form of the integer algorithm. A careful use of the error analysis
yields the optimal parameter a for this acceleration scheme. This value is incorporated
into the algorithm described here. (It is conceivable that if the value of o is allowed
to vary that an even better scheme can be devised.)

The premise for this modification is that in a context such as adaptive beamform-
ing the dynamic range requirement is such that the number of modular arithmetic
units required for the hardware-acceleration suggested in [6] is unlikely to be avail-
able. The modified algorithm together with suitable pipelining of the linear algebra
operations of Gauss elimination (or Gauss-Jordan) could significantly reduce the time-
penalty associated with RNS-division. This, in turn, may be sufficient to render the
RNS-solution of ABF problems using such elimination algorithms practicable for larger
systems than hitherto.

Acknowledgment
 This work was supported by grants from the Office of Naval Research through
both the Naval Air Warfare Center Aircraft Division, Warmmster PA and the Naval
Academy Research Council. '

REFERENCES

[1] J.L.Buchanan & P.R.Turner, Numerical Methods and Analysis, McGraw-Hill, 1992 :
[2] W.A.Chren, Jr., A new residue number system division algorithm, Computers Math Appl 19
(1990) 13-29.
[3] G.1.Davida & B.Litow, Fast parallel arithmetic via modular representation, SIAM J Computing
20 (1991) 756-765.
[4] D.Gamberger, New approach to integer division in residue number systems, Proc 10th Symp. on
Computer Arithmetic, 1991, 84-91.
[5] M.Griffin, M.Sousa & F.J.Taylor, Efficient scaling in the residue number system, Proc IEEE
Conf on Acoustics, Speech and Signal Processing, IEEE, New York, 1989.
[6] M.A.Hitz & E.Kaltofen, Integer division in residue number systems, Comp. Sci Tech Report #
93-9, Rensselaer Polytechnic Institute, May 1994
[7] B.J.Kirsch & P.R.Turner, Modified Gaussian Elimination for Adaptive Beamforming using RNS
Arithmetic, NAWC-AD Tech Report, 94112-50, 1994.
(8] B.J.Kirsch & P.R.Turner, Adaptive Beamforming using RNS Arithmetic, Proc ARITH11, IEEE
Computer Society, Washington, DC, 1993, pp 36-43.
[9] Mi Lu & J-S Chiang, A novel division algorithm for the residue number system, IEEE Trans
Computers 41 (1992) 1026-1032.
[10] N.S.Szabo & R.I.Tanaka, Residue Arithmetic and its application to Computer Technology,
McGraw-Hill, 1967.
[11] P.R.Turner & B.J.Kirsch, An Analysis of Gauss Elimination for Adaptive Beamforming, NAWC-
AD Tech Report, 1994.
(12] P.R.Turner & B.J.Kirsch, Operation complezity for integer or RNS Gaussian elimination,
NAWC-AD Tech Report, 1994.

11

NAWCADWAR-95002-4.5
[13} J.H.Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, 1965.

12

DISTRIBUTION LIST

No. of Copies

US NAVAL ACADEMY.--.o-oc-oo..oocq.-0oo-oooo-o--o.oonoo--ooa-cn-olo

ANNAPOLIS, MD 21402

(ATTN: MATHEMATICS DEPARTMENT, PETER R. TURNER)

AVIONICS DEPARTMENT « ¢ o cevsevncensessennassansannssscsssssssnsossl?
ENGINEERING DIVISION (CODE 4.5.5.1)
NAVAL AIR WARFARE CENTER
AIRCRAFT DIVISION WARMINSTER
P. 0. BOX 5152
WARMINSTER, PA 18974-0591)
(10 FOR CODE 4.5.5.1, BARRY J. KIRSCH)
(2 FOR CODE 7.2.5.5)

DEFENSE TECHNICAL INFORMATION CENTER.:c.cceescscscssscncsvacscesel
ATTN: DTIC-FDAB

CAMERON STATION BG5

ALEXANDRIA, VA 22304-6145

CENTER FOR NAVAL ANALYSIS . eecosvosccscossoscsoscessescnsosossesasssel
4401 FORT AVENUE

P. O. BOX 16268

ALEXANDRIA, VA 22302-0268

OFFICE OF NAVAL RESEARCH. . :eveececcsesoscocscsssssasasasssssosnos
800 NORTH QUINCY STREET
ARLINGTON, VA 22217-5660

(2 FOR ONR-313)

